चेहरा पहचान चेहरा पहचान के तरीकों के लिए एक परीक्षण ढांचे के रूप में इस्तेमाल किया जा सकता
advertisement
नाम | Face Recognition |
---|---|
संस्करण | 1.5.1 |
अद्यतन | 28 मई 2017 |
आकार | 54 MB |
श्रेणी | लाइब्रेरी और डेमो |
इंस्टॉल की संख्या | 100हज़ार+ |
डेवलपर | Qualeams |
Android OS | Android 5.0+ |
Google Play ID | ch.zhaw.facerecognition |
Face Recognition · वर्णन
चेहरा पहचान TensorFlow और Caffe साथ तंत्रिका नेटवर्क सहित कई चेहरा पहचानने के तरीकों के लिए एक परीक्षण ढांचे के रूप में इस्तेमाल किया जा सकता।
यह निम्नलिखित पूर्व प्रसंस्करण एल्गोरिदम में शामिल हैं:
- ग्रेस्केल
- फसल
- आई संरेखण
- गामा सुधार
- Gaussians के अंतर
- कैनी-फ़िल्टर
- स्थानीय बाइनरी पैटर्न
- आयतचित्र समकारी (केवल यदि ग्रेस्केल भी प्रयोग किया जाता है इस्तेमाल किया जा सकता)
- आकार बदलें
आप निम्न सुविधा निष्कर्षण और वर्गीकरण के तरीकों से चुन सकते हैं:
- Eigenfaces साथ निकटतम पड़ोसी
- छवि समर्थन वेक्टर मशीन के साथ Reshaping
- SVM या KNN साथ TensorFlow
- SVM या KNN साथ Caffe
मैनुअल यहाँ https://github.com/Qualeams/Android-Face-Recognition-with-Deep-Learning/blob/master/USER%20MANUAL.md पाया जा सकता है
फिलहाल केवल armeabi-v7a उपकरणों और ऊपर की तरफ समर्थित हैं।
मान्यता मोड में सर्वश्रेष्ठ अनुभव के लिए डिवाइस छोड़ दिया करने के लिए बारी बारी से।
_______________________________________________________________
TensorFlow:
आप Tensorflow Inception5h मॉडल का उपयोग करना चाहते हैं, तो यहाँ से डाउनलोड:
https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
फिर कॉपी फ़ाइल "tensorflow_inception_graph.pb" से "/ sdcard / चित्र / facerecognition / डेटा / TensorFlow"
एक शुरुआत के लिए प्राथमिक सेटिंग्स का उपयोग करें:
कक्षाओं की संख्या: 1001 (नहीं प्रासंगिक के रूप में हम पिछले परत का उपयोग नहीं करते हैं)
इनपुट आकार: 224
छवि मतलब: 128
आउटपुट का आकार: 1024
इनपुट परत: इनपुट
आउटपुट परत: avgpool0
मॉडल फ़ाइल: tensorflow_inception_graph.pb
-------------------------------------------------- -------------------------------------------------- -----
आप VGG चेहरा डिस्क्रिप्टर मॉडल का उपयोग करना चाहते हैं, तो यहाँ से डाउनलोड:
https://www.dropbox.com/s/51wi2la5e034wfv/vgg_faces.pb?dl=0
सावधानी: यह मॉडल केवल कम से कम 3 जीबी रैम के साथ या उपकरणों पर चलाता है।
फिर कॉपी फ़ाइल "vgg_faces.pb" से "/ sdcard / चित्र / facerecognition / डेटा / TensorFlow"
एक शुरुआत के लिए प्राथमिक सेटिंग्स का उपयोग करें:
कक्षाओं की संख्या: 1000 (नहीं प्रासंगिक के रूप में हम पिछले परत का उपयोग नहीं करते हैं)
इनपुट आकार: 224
छवि मतलब: 128
आउटपुट का आकार: 4096
इनपुट परत: प्लेसहोल्डर
आउटपुट परत: fc7 / fc7
मॉडल फ़ाइल: vgg_faces.pb
_______________________________________________________________
Caffe:
आप VGG चेहरा डिस्क्रिप्टर मॉडल का उपयोग करना चाहते हैं, तो यहाँ से डाउनलोड:
http://www.robots.ox.ac.uk/~vgg/software/vgg_face/src/vgg_face_caffe.tar.gz
सावधानी: यह मॉडल केवल कम से कम 3 जीबी रैम के साथ या उपकरणों पर चलाता है।
फिर फ़ाइलों की प्रतिलिपि "VGG_FACE_deploy.prototxt" और "VGG_FACE.caffemodel" से "/ sdcard / चित्र / facerecognition / डेटा / Caffe"
एक शुरुआत के लिए प्राथमिक सेटिंग्स का उपयोग करें:
मीन मूल्यों: 104, 117, 123
आउटपुट परत: fc7
मॉडल फ़ाइल: VGG_FACE_deploy.prototxt
बाट दायर: VGG_FACE.caffemodel
_______________________________________________________________
लाइसेंस फाइलें यहां पाया जा सकता https://github.com/Qualeams/Android-Face-Recognition-with-Deep-Learning/blob/master/LICENSE.txt और यहाँ https://github.com/Qualeams/Android- आमने मान्यता-साथ-दीप-लर्निंग / ब्लॉब / मास्टर / NOTICE.txt
यह निम्नलिखित पूर्व प्रसंस्करण एल्गोरिदम में शामिल हैं:
- ग्रेस्केल
- फसल
- आई संरेखण
- गामा सुधार
- Gaussians के अंतर
- कैनी-फ़िल्टर
- स्थानीय बाइनरी पैटर्न
- आयतचित्र समकारी (केवल यदि ग्रेस्केल भी प्रयोग किया जाता है इस्तेमाल किया जा सकता)
- आकार बदलें
आप निम्न सुविधा निष्कर्षण और वर्गीकरण के तरीकों से चुन सकते हैं:
- Eigenfaces साथ निकटतम पड़ोसी
- छवि समर्थन वेक्टर मशीन के साथ Reshaping
- SVM या KNN साथ TensorFlow
- SVM या KNN साथ Caffe
मैनुअल यहाँ https://github.com/Qualeams/Android-Face-Recognition-with-Deep-Learning/blob/master/USER%20MANUAL.md पाया जा सकता है
फिलहाल केवल armeabi-v7a उपकरणों और ऊपर की तरफ समर्थित हैं।
मान्यता मोड में सर्वश्रेष्ठ अनुभव के लिए डिवाइस छोड़ दिया करने के लिए बारी बारी से।
_______________________________________________________________
TensorFlow:
आप Tensorflow Inception5h मॉडल का उपयोग करना चाहते हैं, तो यहाँ से डाउनलोड:
https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
फिर कॉपी फ़ाइल "tensorflow_inception_graph.pb" से "/ sdcard / चित्र / facerecognition / डेटा / TensorFlow"
एक शुरुआत के लिए प्राथमिक सेटिंग्स का उपयोग करें:
कक्षाओं की संख्या: 1001 (नहीं प्रासंगिक के रूप में हम पिछले परत का उपयोग नहीं करते हैं)
इनपुट आकार: 224
छवि मतलब: 128
आउटपुट का आकार: 1024
इनपुट परत: इनपुट
आउटपुट परत: avgpool0
मॉडल फ़ाइल: tensorflow_inception_graph.pb
-------------------------------------------------- -------------------------------------------------- -----
आप VGG चेहरा डिस्क्रिप्टर मॉडल का उपयोग करना चाहते हैं, तो यहाँ से डाउनलोड:
https://www.dropbox.com/s/51wi2la5e034wfv/vgg_faces.pb?dl=0
सावधानी: यह मॉडल केवल कम से कम 3 जीबी रैम के साथ या उपकरणों पर चलाता है।
फिर कॉपी फ़ाइल "vgg_faces.pb" से "/ sdcard / चित्र / facerecognition / डेटा / TensorFlow"
एक शुरुआत के लिए प्राथमिक सेटिंग्स का उपयोग करें:
कक्षाओं की संख्या: 1000 (नहीं प्रासंगिक के रूप में हम पिछले परत का उपयोग नहीं करते हैं)
इनपुट आकार: 224
छवि मतलब: 128
आउटपुट का आकार: 4096
इनपुट परत: प्लेसहोल्डर
आउटपुट परत: fc7 / fc7
मॉडल फ़ाइल: vgg_faces.pb
_______________________________________________________________
Caffe:
आप VGG चेहरा डिस्क्रिप्टर मॉडल का उपयोग करना चाहते हैं, तो यहाँ से डाउनलोड:
http://www.robots.ox.ac.uk/~vgg/software/vgg_face/src/vgg_face_caffe.tar.gz
सावधानी: यह मॉडल केवल कम से कम 3 जीबी रैम के साथ या उपकरणों पर चलाता है।
फिर फ़ाइलों की प्रतिलिपि "VGG_FACE_deploy.prototxt" और "VGG_FACE.caffemodel" से "/ sdcard / चित्र / facerecognition / डेटा / Caffe"
एक शुरुआत के लिए प्राथमिक सेटिंग्स का उपयोग करें:
मीन मूल्यों: 104, 117, 123
आउटपुट परत: fc7
मॉडल फ़ाइल: VGG_FACE_deploy.prototxt
बाट दायर: VGG_FACE.caffemodel
_______________________________________________________________
लाइसेंस फाइलें यहां पाया जा सकता https://github.com/Qualeams/Android-Face-Recognition-with-Deep-Learning/blob/master/LICENSE.txt और यहाँ https://github.com/Qualeams/Android- आमने मान्यता-साथ-दीप-लर्निंग / ब्लॉब / मास्टर / NOTICE.txt